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A calculation of phonon drag thermopower for a 2pEG
subjected to an in-plane magnetic field
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Abstract. The phonon drag contribution Sgzz 1o the thermopower is calculated for a
IDEG by using Bolizmann equations for both electrons and phonons. The system has
a parabolic confining potential and is subjecied 10 an in-plane magnetic induction field
B and the lemperature gradient is parallel to B. A quasi-phonon model is proposed
which greatly simplifies the calculation of S;. Qualitative comparison is made between
the theoretical predictions and experimental data.

1. Introduction

In our previous work on 2DEGs [1], diffusion thermopower in the presence of elastic
scattering has been considered for the case when subband depopulation & produced
by a magnetic induction field B in the plane of the 2DEG. When the Fermi energy
drops below the first excited subband the scattering rate suffers a sudden decrease
which produces structure in the transport coefficients. Cantrell et al [2] have shown
that the diffusion thermopower can change sign in these circumstances. Calculations
[1, 3] and measurements [4, 5] have confirmed this behaviour.

A recent experiment by Fletcher et al [6] on a high-mobility GaAs/GaAlAs
heterojunction has shown unexpected behaviour of the thermopower S as a function
of B. Instead of the appearance of a valley or a change of sign in —5 the data
exhibits a peak in —S followed by a sharp fall near the depopulation field. The
measurcments were performed above 1 K In that temperature range when B =0
the phonon drag contribution to the thermopower can become dominant [7]. Fletcher
et al [6] suggest that this is the origin of the difference between their experimental
data and the results of the diffusion thermopower calculations.

In this paper, we use a Boltzmann equation approach to calculate the phonon drag
thermopower S, in a quasi-2D system subjected to a parabolic confining potential
and an in-plane magnetic induction field B. Attention is focused on the case when
the temperature gradient is parallel to B. The Boltzmann equations and their formal
solutions for the electrons and phonons are given in the next section. In section 3, the
symmetry of some quantities of interest and its use in simplifying the evaluation of
the transport coefficients is discussed. We then introduce, in section 4, the ‘phonon
drag velocity’ which plays a role in S, which is analogous to that played by the
electron vejocity in diffusion thermopower. In section 5, we propose a ‘quasi-phonon’
model which greatly simplifies the calculations. The theoretical results are given and
discussed in section 6. Finally, in section 7, we draw some conclusions.
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2. The Boltzmann equations for electrons and phonons

In the presence of an electric field E and a temperature gradient VT in the zy-
plane, the linearized steady-state Boitzmann equations for the 2D electron and 3D
phonon distribution functions are [1, 8):

(8faf8t) = (S /de,)v,,  [eE + (e, — ¢p)VT/T] M
(8Ng/8t), = —(ANY [d(wg))v,q - hogVT/T. 2

Here Q is the 3D acoustic phonon wave vector and a = {n,k}, in which n is the
subband index k is the 2DEG wave vector in the zy-plane.

Following Cantrell and Butcher [8] we take two collision mechanisms into account:
elastic scattering and the electron-phonon interaction. The contribution to (8 f!/ at),
involving elastic scattering takes the form

(E’fl) S5 = ()

where 8 = {n’,k’}. In this equation p°(cx,3) denotes a scattering rate. As
discussed in [1, 2], it is not possible to simplify this equation within the relaxation
time approximation because the parallel magnetic field makes the subband structure
anisotropic. The contribution to (8 f1 /1), from the electron-phonon interaction is

(), [(4) o () et

1 dNg L@ Q
tRT L (~atnay) Mert-rs

where

rgs = fo(l— f)p(e, Q) T3, = f2(1- f)p™(e, 5;Q)

are equilibrium electron fluxes from o to @ involving phonon emission and phonon
absorption respectively. The reader is referred to [8] for expressions for p*( o, 3; Q)
and p*(a, 5; Q).

The first term in (8f}/t),, can be neglected in comparison with the elastic
scattering contribution (8 f1/81), to (8 fL/81).. Then we have

asl . ang \~
(f) Z(fﬂ f‘)p(a,ﬁ)+kTZ(—a—(—h—£—)) No(T3s-T3.). @

At liquid helium temperatures the phonon relaxation is dominated by boundary
scattering for which a relaxation time approximation is valid (the magnetic field has
no effect on the phonons). Moreover, the contribution from the electron—phonon
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interaction to (6Nb /8t), can be omitted because it contributes only in second order
to f1. Hence, for phonons we have simply

(BNL/81), = =N}/, @

where 7, is the phonon relaxation time.
We define the electron lifetime as

ro(e) = [Zﬂjps(a,ﬁ)]"l. )

Then we may substitute Nj from (4) into (3) and, using (1) and (2), obtain the
equation

dre vT 1
fl= T{)(a)d_{:'vea . [eE + (€q — €F)—T-] - Tu(ﬂ)'gf

<3 (02, = T9,)v,, - g TT+fo(a);f§p‘(a,ﬂ) )

from which to determine fl.
As in reference [1], it 5 convenient to introduce the ‘renormalized electron
velocity' V(o) which is defined by the equation

Vo(0) = veq + 3 P, Ao AVl B). )
8

It is also convenient in the present calculation to introduce the ‘phonon drag velocity’
V;(«) by means of the analogous equation

V(@) = Vy(a) + Y p*(a, B)ro(BIV,(B) ®
8
where
-1
Veola) = 35 ; Tp(Tap = T da)iwgpg- ©)

Then f! can be written in the superficially simple form

i = @ V@) [eB 4 (c0 = e TF] + @) T (10
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3. The symmetry of the transport coefficients

The transport coefficients o;; and L, are defined in [9] by
€ 1
Ji= =23 favei = ) _loy Bj 4+ Li;(VT);] (an
a i
where A is the area of the 2DEG. Substituting (10) in (11) we see that

2 d 0
7y = =5 2 70(e) (52 v Vi (@) (12)

and

dfu
Ly = =57 L7 (G2 (o~ )iV () = 57 2 () Vi),
a3

The first term in the right-hand side of (13) is independent of the electron—phonon
interaction. It is the ‘diffusion’ term which we denote by L. The second term is
due to phonon drag.and is our main concern. We denote it by Ly

To simplify the calculation of L. and L, we assume, as m [1], a parabolic
confining potential and put B = (B, 0 ,0). We aiso suppose that the elastic scattering
is caused by randomly located §-function potentials. The electron—phonon intcraction
is written in the isotropic form

H,=EV-u (14)

where E; is the deformation potential and the 3D lattice displacement 2 has the
standard form [8]:

1/2
= h to—i@-R iQ-R
u = %: (m‘) nQ . Q(O:Qe ! + aQe )

where ng is a polarization vector and a3 and ag are creation and annihilation
operators.

In [1] we discuss the symmetry of the interband elastic scattering rates and the
corresponding electron lifetimes. We show there that these symmetries lead to the
following results for the renormalized electron velocity

Ve (@) = Veaz (15a)
Voy(ny kg ky) = Vo (n,—kgo k) = =V, (n, by, —ky). (15b)

We also show in [1] that, as a consequence of (15) [oy;] and [L;;] are diagonal
matrices in the absence of phonons.

It is not difficult to generalize the above arguments to deal with the model
under discussion here which includes the electron—phonon interaction. The electron
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transition rates produced by this interaction when a phonon of wavevector Q is either
absorbed or emitted are given in [8]. To determine the symmetry of the zero-order
phonon drag velocity Viy(«a) in (9) we change the signs of k, (or k,) for state o
and k, (or k,) for state 3 and g, (or q,) in the phonon wavevector. These changes
preserve both energy and momentum conservation. Using the formulae in [8] we
then find that the factor multiplying the phonon velocity v, in (9) is invariant, while
in v itself either the = (or y) component changes sign. It follows that

Vol kg ky) = Vg (n by —ky) = — Vi, (n, =k, k) (16a)
Vg.\y(n$k:t’ky) = Vg(]y(n!—k;-aky) = _VgUy(ni k;;-! _ky)' (1&)

We note that (154) implies that V(o) has the same symmetry in k space as
Ve (n, kz, k) which is exhibited in (16a).

Proceeding as in [1] we find that (15) and (16) yield the following results for the
renormalized phonon drag velocity:

Vgx(a) = V() (172)
Vi (noke k) = Vi (n,~k k) = =V, (n, k. ~k,). (17b)

Equations (17) are compietely analogous to equations (15). Taken together, (15)
and (17) imply that the matrices [o;;] and [L,;] remain diagonal in the presence of
phonons. Hence the total thermopower tensor is also diagonal with elements

Spe =—Lo [0, Syy = —Lw/o'yy. (18)

Morteover, if we confine our atteation to o, and S, we only need v and
V(@) which are given explicitly by equations (216) and (9) respectively. We
confine our attention to this simple case in the calculations which follow. In [1]
we calculate V(o) iteratively from (7) and use the result to evaluate o, and the
diffusion thermopower tensor ¢lement Sy, ., in the absence of phonons. Phonon drag
has 2 negligible effect on o, but it determines the phonon drag thermopower tensor
element S,,, which is important in GaAs/GaAlGaAs heterojunctions above 1 K
We will discuss the iterative solution of (8) for V, («) and its application to the
calculation of S, in another paper.

4. The phonon drag velocity

The contribution to L,, in (13) involving V,,.(«) has a significant factor d f° /de,,
in the summand. It is useful to pull the same factor out of the summand of the
contribution © L, involving V(o). To do so we use the identities

2= fONUNY + 1) = —kgT(df3 /e, )(1— f§ + NG) (19a)

Fo(1 = fRING = —kgT(df2 [de, )( S5 + NQ) (19)

which are valid when €5 = €, — fiwg in (19a) and when e = ¢, + liwg in (19h).
These conditions are imposed by the energy-conserving é-functions which multiply
these two expressions in Vi, (a). We may use (19) to write

V(o) = (42 /de YU () (20)
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in which Uy («) is easily identified.
For a parabolic confining potential V{(2) = m*w2z%/2 the electron energy and
velocity are [1]

€, = (B2 /2m*)KkL + (B /2m})kE + (n + )i, (21a)

Veo = (hk, [fm”, Bk, [m] (21b)
where m* is the effective mass of the electrons and m; is given by

m" fmy = v = (w/w)? @2)

with w? = w2 + w? in which w_ is the cyclotron frequency.

It is useful to introduce the 2D wavevector k* = (k_, /7k,). Then ¢, is fixed by
the magnitude of k* and v, and v,,, are respectively proportional to cos @ and sin
¢ where 8 is the angle between k* and the z-axis. We also find that the calculated
6-dependences of Uy, (o) and Uy, (o) for various subbands and various parameter
values are approximately proportional to cos & and sin 6 respectively. To exploit this
simple behaviour we introduce a three-point approximation:

Upe(6) = cos 6 {Ug,x(a =0)—2 [Ug(,z(ﬂ = 0) - ViU, (0 = 7r/4)] sinzf?}

Ug,(0) =sin0 {Um(e = 7/2) + (2//7)

x [Ups(8 = 0) = V2Uy, (8 = 7/4)| cos? 6} . (23)
In figure 1 the solid lines show exact values of Uy, and Uy, when n/n, = 2.37
and the dots and crosses are derived from (23). Here, n is the ¢lectron density
and n; = m*wy/h is a characteristic electron density for our model [1]. It can
be seen from the figure that the approximation (23) is reasonable. When B = 0,
Uy, and Uy, have exact cos 0 and sin 0 variations when k is fixed. This is casy
to understand physically. As a consequence of momentum conservation the phonon
velocity is proportional to k — k', After the summation over &', only the component
of k — &' which is parailel to k makes a contribution t0 Uy(«) because the system
is isotropic when B = 0. Hence the 6-dependence of Uy, is the same as that of k.

Ugox {@) (Arb. Units)
Ugoy (@) (Arb. tnits)

X , \ Figure 1. Up.{a) in the ground subband as a
0 A T,  function of the angle @ when €o = 19.385 meV,
@ T=15K B=428 Tand nfng = 2.37.




2DEG thermopower in a parallel magnetic field 9047

-
y [

[

~

B(T) = 35

Uger (£) (Arb. Units)

Ugey (€] (Arb. Units)

(€~ 2¢)/Bigl (E— & )/BkeT

Figure 2 Left-hand pamel: Upg, (o) as a function of the energy e, in the ground
subband wher 8 =0and B =3.5and 5T, T =15 K and n/ny = 2.37, Right-hand
panel: U, (a) as a function of the energy €a in the first subband when & = x /2 and
B=35and 5T T=15Kand n/ny = 2.37.

Figure 2 shows the energy dependence of Uy, and Uy, when e, is near the Fermi
energy. Both quantities take minimum values near €5 Fsoom (19) we know that there

is a factor 1= f“ =1-fYe,= fiwg) involvéd™in” thie phonon emission process which is
most important when e, > ep + fiwg. Similarly, the factor I3 = f’(e,+Tg) which
is involved in the phonon absorpnon process is most xmportant when €, < ep— hwg
Consequently, for electron energies near ep the sum of these two processes leIdS
small values of both U, and Uy, . The factor (d S /de,) in (20) has a peak at the
Fermi energy with a half width 1.8kBT . It is usually set equal to a é-function at low
temperatures. We do not make that approximation here because the behaviour of
Uy described above gives a significant width to the peak in the components of Vo
at the Fermi level. The broadening effect is especially strong when the Fermi energ)r
is located near a subband edge and must be allowed for in the calculations.

5. The quasi-phonon model

In this section we develop a useful approximation to Ug(a) = V,/(d fa/de,)
which simplifies the summation over all possab]e phonon modes in (9). Inspection
of figure 2 (left hand panei} shows that Uy, (o) looks like 1 — e, - hwgq. )
when €, > e and it looks like f%(e, + fiwg. ) when ¢, < ¢ where Q" (which is
different in the two cases) is fixed. Thus the behaviour is what we would expect if
one phonon with a characteristic wave number Q* dominated the absorption process
and another phonon with a different Q* dominated the emission process. To exploit
this observation we introduce a modified temperature Ty, a modified Fermi energy
€fp and a characteristic wave number Q7 when €, > ep and similar quantities T3,
€ and Q3 when €, < ep. Then we use the approximations
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_ hstI - ﬁstI + E%I — € -
Ups(eq) = Uy {[exp (__kBTf ) - 1] + [exp ( kg T ) + 1]

€ > €F
—_ sQE i hstZ ) + €o -
=t {[ow (525) ] "+ or (M) « ]

€, < €. (24)

The parameters in (24) can be determined by calculating Uy, (o) at a few points.
When B < 9T the error in this approximation is usually less than 5%. When ¢p is
near the subband edge, it goes up to ~ 8% in some cases. Calculations also show that
T* and eg are not far from the actual values of T" and cp. Consequently, the basic idea
of using a characteristic wavenumber to simulate the whole process does not change
the theoretical description in a significant way. We give some typical results of this
approximation when T = 1.05 K and n/n, = 3 in table 1. The parameters in (24)
are obtained from exact four-point calculation of Uy,. The depopulation field B, in
this case is about 7.4 T around which Q* shows an obvious decrease which reflects
the disappearance of the inter-subband emission and absorption scattering processes.
In the right hand panel of figure 2 we show Uy, which may be approximated in the
same way.

Table L. The fitting parameters T, T3, g, €, Q7 and Q3 used in the quasi-phonon
model for the ground subband whepr 8 =0, T = 1.05 K and n/ny = 3.0.

B T} TP ¢ & & RVAQT  hVQ3
o ® K) (meV) (meV) (meV) (meV) (meV)
] 1.09 1.05 314 3.5 31.3 0.458 0418
1 1.09 105 314 315 33 0.462 0.418
2 1.09 1.04 314 315 313 0.465 0418
3 109 104 316 ) e 315 0.465 0419
4 1.09 104 317 318 36 0.473 0.423
5 .09 104 320 321 31.9 0.483 0.430
6 1.09 104 323 324 322 0.492 0438
7.4 1.11 105 329 33.0 328 0414 0.396
8 L15 107 326 327 s 0.453 0.398

6. Results and analysis

To compare the theoretical results with the data of Fletcher ¢ al [6], we use the
GaAs effective mass m* = 0.067m, and material density p = 5.3 x 10° kg m~3;
we also set the acoustic phonon velocity V, = 5.1 x 10° m s~! and the deformation
potential £, = 8 eV [8]. The critical electron density at which ¢ enters the first
excited subband in the experiment is in the order of 5 x 10 m~2 {6]. Using this
value we find that the characteristic electron density ny = m*wy/h is in the order
of 2.5 x 10" m~2, Hence hw, = 17.92 meV. We find that reasonable values of
resistance and phonon drag thermopower can be obtained by setting =, [1] and the
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Figure 3. 'The dependence of phonon drag Figure 4. The dependence of phonon drag
thermopower Sgz; on temperature T when B =0 thermopower Sg. on the electron density when
and n/ng = 1.17 (solid line), 3.0 (dashed line) and 7T = 1.5 and 2.1 K and B = 0 (Jashed lines) and
4.5 (dash-dot line). 6 T (solid lines).

phonon relaxation time 7, equal to 400 ps and 6x 10° ps respectively. In the present
calculations we neglect the energy dependence of the electron lifetime within one
subband which is a good approximation when e, ~ 18 meV [1].

The phonon drag thermopower as a function of 7 at B = 0 and as a function
of nfn, when B = 0 and 6 T are shown in figures 3 and 4 respectively. The
results are qualitatively consistent with experiment {6]. Quantitatively the theoretical
curves change more rapidly as T increases and, when the Fermi level passes into
the first excited subband, the calculated sudden rise of thermopower is much larger
than is seen experimentally. These differences can be understood by considering
the following points. Firstly, we use a constant phonon relaxation time whereas in
reality it is temperature dependent. Secondly, the theoretical relation between ep
and n is unrealistic because we use a simple parabolic confining potential. Thirdly,
energy-level broadening effects have been ignored altogether in the calculation.

The phonon drag thermopower -5, as the function of B at various values of
nfn, when T = 1.05 K and 1.5 K is shown in figures 5 and 6 respectively. Resistivity
results at 7' = 1.5 K are presented in figure 7 for comparison. As in the experiments
[6], structure appears in the plot of —S,, . against B when n/ng exceeds a certain
value. When n/ng = 3, for example, — S, initially rises and then falls sharply near
the depopulation field. Figure 8 shows the temperature dependence of plots of — S,
against B. As would be expected, the shallow peak structure gradually disappears
with increasing temperature in agreement with the data. By comparing figures 6 and
7 we confirm that the peak structure of — S, is not due to the increasc of resistivity
alone. When n/n, is 2.2 or 2.5, the resistivity has a peak but the phonon drag
thermopower does not.

The experimental peak of —S,._ is much sharper than we calculate. The most
likely explanation is that the calculations are made with E parallel to B and the
measurements are made with E perpendicular to B. In our model, a sharp drop
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60 T T T T T T T 220 T T T

- qux (J'J‘V/K)

B(T) 8(T)

Figure 5. Phonon drag thermopower Sg:» as a  Figure 6. Phonon drag thermopower Spr; as a
function of B at T = [.05 K with n/ng as function of B at T = 1.5 K with 1 /ng as indicated
indicated on the curves, on the curves.

Ry (Ohms}

PO 3 O i g Figure 7. Resistivity Ror as a function of B at
B(T) T = 1.5 K with n/ny as indicated on the curves,
of the —5,_, near the depopulation field B, is caused by the disappearance of the

inter-subband emission and absorption scattering processes when the Fermi energy
drops below the bottom of the first excited subband. The theoretical origin of the
increase of —S,. . in the region of B < B, is that a phonon mode with a larger
effective @ is involved as B increases for both inter- and intra-subband scattering
processes. We would expect the primary effect of this to be similar in 5,;; and S, .
However, the parallel component of the phonon drag velocity component VguI(ch)
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B(T) on the curves.

shows a monotonic decrease with B which greatly depresses the peak of -5, ., and
even suppresses the peak altogether when n/ny < 2.5 Numerical comparison of the
values of Uy, (ep) and Uy , (€p) given in figures 2.1 and 2.2 (which are too small to
be Mentlﬁed directly from the figures) show that Uy, (eg) is larger than Uy, (eg) in
value, and that it also has a positive slope when B increases. Iterative calculauons
of Uy, (ep) are needed to see if this behaviour is maintained sufficiently strongly in
higher orders to secure agreement with the experimental data.

7. Conclusion

We have presented the results of calculations of the element S, of the phonon
drag thermopower tensor when an in-plane magnetic field is applied t©0 a 2DEG in
the z-direction. The theory predicts that S, . will increase sharply with electron
density when the Fermi lewel enters the first excited subband. It also shows that,
for some electron densities, S, increases (rather gently) with B as a depopulation
field is approached after which it decreases sharply. Measurements have been made
of S,,, which shows behaviour which is qualitatively similar to that calculated for
Syeq- However, the experimental results are less sensitive to » and more sensitive
to B. Calculations of S, are required but they necessitate iterative solution of an
equation for the y-component of the phonon drag velocity V,,. In zeroth order V,
behaves in a way which suggests that a calculation of S, will yield behaviour in
much better agreement with the experimental data. If these indications are preserved
in higher orders of iteration then it would be worthwhile to calculate 5, for a
realistic confining potential and more realistic scattering mechanisms.
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