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AbsLmcL The phonon drag mntribution Se. to the thermopower is calculated for a 
mec by using Eollzmann qualions for both electrons and phonons. Th~he ystem has 
a parabolic mnfining polcnlial and is subjected to an in-plane magnelic induction field 
B and the lemperature gradient b parallel to B. A quasi-phonon model is proposed 
which p a l l y  simplifies the calculation of S,. Qualitative mmparison is made k t w e e n  
the theorelical predictions and experimental dam 

1. Introduction 

In our previous work on 2DEGs [l], diffusion thermopower in the presence of elastic 
scattering has been considered for the case when subband depopulation is produced 
by a magnetic induction field B in the plane of the ZDEG. When the k r m i  energy 
drops below the first excited subband the scattering rate suffers a sudden decrease 
which produces structure in the transport coefficients. Cantrell cl a1 [2] have shown 
that the diffusion thermopower can change sign in these circumstances. Calculations 
[l, 31 and measurements [4, 5] have confirmed this behaviour. 

A recent experiment by Fletcher a a1 [6] on a high-mobility GaAsiGaAlAs 
heterajunction has shown unexpected behaviour of the thermopower S as a function 
of B. Instead of the appearance of a valley or a change of sign in -S the data 
exhibits a peak in -S followed by a sharp fall near the depopulation field. The 
measurements were performed above 1 K. In that temperature range when E = 0 
the phonon drag contribution to the thermopower can become dominant [7]. Fletcher 
et a1 [6] suggest that this is the origin of the difference between their experimental 
data and the results of the diffusion thermopower calculations. 

In this paper, we use a Boltzmann equation approach to calculate the phonon drag 
thermopower Skzz in a quasi-2D system subjected to a parabolic confining potential 
and an in-plane magnetic induction field B.  Attention is focused on the case when 
the temperature gradient is parallel to B. The Boltzmann equations and their formal 
solutions for the electrons and phonons are given in the next section. In section 3, the 
symmetry of some quantities of interest and its use in simplifying the evaluation of 
the transpon coefficients is discussed. We then introduce, in section 4, the ‘phonon 
drag velocity’ which plays a role in Sg which is analogous to that played by the 
electron velocity in diffusion thermopower. In section 5, we propose a ‘quasi-phonon’ 
model which greatly simplifies the calculations. The theoretical results are given and 
discussed in section 6. Finally, in section 7, we draw some conclusions. 
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2. Ihe Boltzmann equations for electrons and phonons 

In the presence of an electric field E and a temperature gradient V T  in the XY- 

plane, the linearized steady-state Boltzmann equations for the ZD electron and 3~ 
phonon distribution functions are 11, 81: 

H Tang and P N Butcher 

( a f ; / a t ) ,  = (dft/de,b,. [ e E  + (ea - c ~ ) V T / 7 1  

(aN$/at) ,  = -(dNG/d(TwQ))u,Q. hwQVT/T. (2) 

(1) 

Here Q is the 3D acoustic phonon wave vector and a = { n , h } ,  in which n is the 
subband index k is the ZDEG wave vector in the zy-plane. 

Following Cantrell and Butcher [SI we take two collision mechanisms into account: 
elastic scattering and the electron-phonon interaction. The contribution to ( a  f ' / a t ) ,  
involving elastic scattering takes the form 

where p = {n',k') .  As 
discussed in [l, 21, it is not possible to simplify this equation within the relaxation 
time approximation because the parallel magnetic field makes the subband structure 
anisotropic. The contribution to ( a  fA/at)c from the electron-phonon interaction is 

In this equation p ' (a ,p )  denotes a scattering rate. 

where 

are equilibrium electron fluxes from a to p involving phonon emission and phonon 
absorption respectively. The reader is referred to [SI for expressions for pd( a ,  p; Q )  

The first term in (af:/at) , ,  can be neglected in comparison with the elastic 
and p " ( a , p ; Q ) .  

scattering contribution ( a f A / a t ) ,  to (afA/at) , .  Then we have 

At liquid helium temperatures the phonon relaxation is dominated by boundary 
scattering for which a relaxation time approximation ir mlid (the magnetic field has 
no effect on the phonons). Moreover, the contribution from the electron-phonon 
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interaction to ( a N & / a t ) ,  can be omitted because it contributes only in second order 
to fb. Hence, for phonons we have simply 

( a N & / a l ) ,  = -N' 915 

where rp is the phonon relaxation time. 
We define the electron lifetime as 

Then we may substitute Nh from (4) in1 
equation 

d, UsiI 

(4) 

(5) 

(2). obtain the 

from which to determine f:. 

velocity' V,( a) which is defined by the equation 
As in reference [l], it is convenient to introduce the 'renormalized electron 

It is also convenient in the present calculation to introduce the 'phonon drag velocity' 
V,(a) hy means of the analogous equation 

V&m) = V$JCa, + C P " ( a , m " ( P ) v , ( P )  (8) 
P 

where 

Then fi can be written in the superficially simple form 



9044 

3. The symmetry of the transport coefficients 

The transport coefficients uij and Li j  are defined in [9] hy 
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where A is the area of the ZDEG. Substituting (10) in (11) we see that 

and 

(13) 

The first term in the ,right-hand side of (13) is independent of the electron-phonon 
interaction. It is the 'diffusion' term which we denote by Ldij. The second term is 
due to phonon drag.and is our main concern. We denote it by Lgi, .  

Tb simplify the calculation of Ldij  and L f i j  we assume, as m [l], a parabolic 
mnfining potential and put B = (B,O,O). We also suppose that the elastic scattering 
is caused by randomly located 6-function potentials. The electron-phonon intcraction 
is written in the isotropic form 

He,  = E , V .  U (14) 

where E, is the deformation potential and the 3 0  lattice displacement 71 has the 
standard form [8]: 

where qQ is a polarization vector and a& and aQ are creation and annihilation 
operators. 

In [l] we discuss the symmetry of the interhand elastic scattering rates and the 
corresponding electron lifetimes. We show there that these symmetries lead to the 
following results for the renormalized electron velocity 

K d a )  = vce5 (154 

Ky(n,k,,ky)= V , , ( n , - k , , k y )  = -Ky(n,k,,-ky). (15b) 

We also show in [l] that, as a consequence of (15) [u i j ]  and [ L i j ]  are diagonal 
matrices in the absence of phonons. 

It is not difficult to generalize the above arguments to deal with the model 
under discussion here which includes the electron-phonon interaction. The electron 



WEG thennopower in U parallel magnetic @Id 9045 

transition rates produced by this interaction when a phonon of wavevector Q is either 
absorbed or  emitted are given in [8]. 'Ib determine the symmetry of the zero-order 
phonon drag velocity VgJ(a) in (9) we change the signs of k, (or ky) for state a 
and k: (or I$)  for state p and q, (or 9,) in the phonon wavevector. These changes 
preserve both energy and momentum conservation. Using the formulae in [8] we 
then find that the factor multiplying the phonon velocity vp4 in (9) is invariant, while 
in up4 itself either the 2 (or y) component changes sign. It follows that 

(164 

(166) 

VgJA n, k, > ") = v$,(n, IC,, -IC, ) = -V& n ,  -k , k, ) 
V@,(%k?kY) = v$y(%-k,,ky) = -Vyy(n,k,,-k,). 

We note that (150) implies that V,(a) has the same symmetry in k space as 
V,,(n,k,,ky) which is exhibited in (1Q). 

Proceeding as in [l] we find that (15) and (16) yield the following results for the 
renormalized phonon drag velocity: 

V,Ca) = VgJAa) (174 

Vyr(",k,,ky) = %,(n,-lc,,Ic,) = -Vyr(n,k,,-ky). (176) 

Equations (17) are completely analogous to equations (15). Dken together, (15) 
and (17) imply that the matrices [a i j ]  and [L. . ]  remain diagonal in the presence of 
phonons. Hence the total thermopower tensor IS also diagonal with elemem '1. 

s,, = - L I a z =  s,, = - L y y / a y y .  (18) 

Moreover, if we confine our attention to aZ5 and S,,, we only need venZ and 
V,,(a) which are given explicitly by equations (21b) and (9) respectively. We 
confine our attention to this simple case in the calculations which follow. In [ l ]  
we calculate &(a) iteratively from (7) and use the result to evaluate ay, and the 
diffusion thermopower tensor element Sdvy, in the absence of phonons. Phonon drag 
has a negligible effect on ay, but it determines the phonon drag thermopower tensor 
element Ssyy which is important in GaAs/GaAIGaAs heterojunctions above 1 IC 
We will discuss the iterative solution of (8) for V,,(n) and its application to the 
calculation of SWy in another paper. 

4. The phonon drag velocity 

The contribution to L,, in (13) involving V,,(a) has a significant factor df:/dE, 
in the summand. It is useful to pull the same factor out of the summand of the 
contribution to L,, involving Vpo( a). 'Ib do so we use the identities 

f:(l - f:)(NG -I- 1) = -kgT(df:/dE,)(l- fj -I- N & )  

f:(1 - fj)NG = -bT(df:/dE,)($ -I- 

(194 

(196) 

which are valid when to = E, - hwq in (19a) and when to = e ,  + hwq in (196). 
These mnditions are imposed by the energy-conserving 6-functions which multiply 
these two expressions in V&(a), We may use (19) to write 

Vg~(a) = (df:/dE,)Uy(a) (20) 
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in which U@(a) is easily identified. 

velocity are [l] 

H Tang and P N Butcher 

For a parabolic confining potential V ( z )  = m ' w ~ z z / 2  the electron energy and 

6- = (h2 /2m*)k2  t ( h Z / 2 m ; ) k :  + (n t $)hwc ( 2 1 4  

U, = ( h k , l m * ,  h k Y l m ;  (21b) 

malm; E y = ( w u / w )  Z 

where m' is the effective mass of the electrons and m; is given by 

(22) 

with wz = w i  + w,' in which wc is the cyclotron frequency. 
is fixed by 

the magnitude of k' and veos and veoY are respectively proportional to cos O and sin 
O where 0 is the angle between k' and the z-axis. We also find that the calculated 
Odependences of U@,(a)  and Uf lY(a )  for various subhands and wrious parameter 
values are approximately proportional to cos O and sin O respectively. 'RI exploit this 
simple behaviour we introduce a three-point approximation: 

U f l s ( e ) = c o s e { U @ , ( O = ~ ) - 2 [ U y , ( e = ~ ) - ~ c i , , ( e = ? r / 4 ) ]  sinZe} 

u f l y ( e ) = s i n o { u @ y ( e =  r / z ) + ( z / f i )  

It is useful to introduce the ZD wavevector k' = ( k , ,  J 4 k  ) Then 
y : 

x [rr,,(e = 0) - JZu,,(e = =/4)] C O S ~ O }  . (23) 

In figure 1 the solid lines show exact values of U@= and UeY when n/nO = 2.37 
and the dots and crosses are derived from (23). Here, n is the electron density 
and nu = m'wu/h is a characteristic electron density for our model [l]. It can 
be Seen from the figure that the approximation (U) is reasonahle. When B = 0, 
U* and UBDy have exact cos O and sin 0 variations when k is fixed. This is easy 
to understand physically. As a consequence of momentum conservation the phonon 
velocity is proportional to  k - k'. After the summation over IC', only the component 
of k - k' which is parallel to k makes a contribution to V,(a) because the system 
is isotropic when B = 0. Hence the Odependence of U@ is the same as that of k. 
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F@m 2 Left-hand panel: U@=(a) as a funaion of the energy e o  in the ground 
subband when B = 0 and B = 3.5 and 5 '& T = 1.5 K and n/uo = 2.37. Right-hand 
panel: U&(o) as a funaion of the energy ea in the hrst suhbnnd when B = s / 2  and 
B = 3.5 and 5 T T = 1.5 K and n lno  = 2.37. 

Figure 2 shows the energy dependence of U&s and U when eo is near the Fermi 
energy. Both quantities take minimum values near fF.- F?;m (19) we know that there 

- - b a factor 1:f" 8 -  l-fu(Co-hwQ) inColv.5d-in-ttie phonon FmisSiOn prOck<hhi& 6- - 
most important when e, > e ,  + hwQ. Similarly, the factor fj = f"( E, + hwq) which 
is invOlved in the phonon absorption process is most important when e ,  < eF - T u Q .  
Consequently, for electron energies near tF the sum of these two processes yields 
small values of both Ubus a,nd Ubug. The factor (df:/dc,) in (20) has a peak at the 
Fermi energy with a half wdth l.Sk,T. It is usually set equal to a 6-function at low 
temperatures. We do not make that approximation here because the behaviour of 
Ubu described above gives a significant width to the peak in the components of Vy 
at the Fermi level. The broadening effect is especially strong when the Fermi energy 
b located near a subband edge and must be allowed for in the calculations. 

- -  

5. The quasi-phonon model 

In this section we develop a useful approximation to V,(a) = Vfl/(df:/de,) 
which simplilies the summation over all possible phonon modes in (9). Inspection 
of figure 2 (left hand panel) shows that U @ = ( a )  looks like 1 - f"(r, - hwq.) 
when car > cF and it looks like f"(e, + frwQ.) when E, < eF where Q' (which is 
different in the two cases) is fixed. Thus the behaviour is what we would expect if 
one phonon with a characteristic wave number Q' dominated the absorption process 
and another phonon with a different Q' dominated the emission process. 'RI exploit 
this observation we introduce a modified temperature Ti, a modified Fcrmi energy 
E;, and a characteristic wave number Q; when E, > cF and similar quantities T;, 
e& and Q; when eo < E, .  Then we use the approximations 
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< Cp. (24) 

The parameters in (24) can be determined by calculating U$=(CY) at a few points. 
When B < 9 T the error in this approximation is usually less than 5%. When ep is 
near the subband edge, it goes up to - 8% in some cases. Calculations also show that 
T' and c; are not far from the actual values of T and eP Consequently, the basic idea 
of using a characteristic wavenumber to simulate the whole process does not change 
the theoretical description in a significant way. We give some typical results of this 
approximation when T = 1.05 K and n/nU = 3 in table 1. The parameters in (24) 
are obtained from exact four-point calculation of U,*. The depopulation field E, in 
this case is about 7.4 T around which Q' shows an obvious decrease which reflects 
the disappearance of the inter-subhand emission and absorption scattering processes. 
In the right hand panel of figure 2 we show U$, which may he approximated in the 
same way. 

Tsbk L ?he fitting parameters Ti. T:, c i l ,  e & ,  Q; and Q f  used in the quasi-phonon 
model for the ground subband when 8 = 0, T = 1.05 K nnd n/n0 = 3.0. 

B 
0 
0 
I 
2 
3 
4 
5 
6 
7.4 
8 

T; 
6) 
1.09 
1.09 
1.09 
1.09 
1.09 
1.09 
1.09 
1.11 
1.15 

T; 
00 
1.05 
1.05 
1.04 
1.04 
1.04 
1.04 
1.04 
1.05 
1.07 

fF Gl 
(mev) (mev) 
31.4 31.5 
31.4 31.5 
31.4 31.5 
31.6 31.7 
31.7 31.8 
320 32.1 
32.3 32.4 
329 33.0 
32.6 32.7 

31.3 
31.3 
31.3 
31.5 
31.6 
31.9 
32.2 
32.8 
32.5 

h K Q ;  
(me") 

0.458 
0.462 
0.465 
0.465 
0.473 
0.483 
0.492 
0.414 
0.453 

LVrQf 

0.418 
0.418 
0.418 
0.419 
0.423 
0.430 
0.438 
0.396 
0.398 

6. Results and analysis 

'RI compare the theoretical results with the data of Fletcher a al 161, we use the 
GaAs effective mass m' = 0.067me and material density p = 5.3 x lo3 kg ~ n - ~ ;  
we also set the acoustic phonon velocity V,  = 5.1 x lo3 m s-I and the deformation 
potential E, = 8 eV [8]. The critical electron density at which ep enters the first 
excited subhand in the experiment is in the order of 5 x loL5 m-2 161. Using this 
value we find that the characteristic electron density no = 7n'wo/h is in the order 
of 2.5 x 10'' m-*. Hence two = 17.92 me\! We find that reasonable values of 
resistance. and phonon drag thermopower can he obtained by setting [I] and the 
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,---------- 

1.8 2.2 2.6 

n/no 

F@m I ?he dependence of phonon drag Figure 4 l%he dependence of phonon drag 
thennopower S,, on temperalure T when B = 0 thennopower S,, on h e  electron densily when 
and n f no = 1.17 (solid line), 3.0 (dashed line) and T = 1.5 and 2.1 K and B = 0 (dashed lines) and 
4.5 (dashdol line). 6 T (salid lines). 

phonon relaxation time T~ equal to 400 ps and 6 x 10' ps respectively. In the present 
calculations we neglect the energy dependence of the electron lifetime within one 
subband which is a good approximation when ti, - 18 meV [l]. 

The phonon drag thermopower as a function of T at B = 0 and as a function 
of ./no when B = 0 and 6 T are shown in figures 3 and 4 respectively. The 
results are qualitatively consistent with experiment (61. Quantitatively the theoretical 
curves change more rapidly as T increases and, when the Fermi levcl passes into 
the first excited subhand, the calculated sudden rise of thermopower is much larger 
than is seen experimentally. These differences can be understood by considering 
the following pints. Firstly, we use a constant phonon relaxation time whereas in 
reality it is temperature dependent. Secondly, the theoretical relation between tp 

and n is unrealistic because we use a simple parabolic confining potential. Thirdly, 
energy-level broadening effects have been ignored altogether in the calculation. 

The phonon drag thermopower -Sgzz as the function of B at various values of 
n/no  when T = 1.05 K and 1.5 K is shown in figures 5 and 6 respectively. Resistivity 
results at T = 1.5 K are presented in figure 7 for comparison. As in the experiments 
[6], structure appears in the plot of -SgZ5 against B when ./nu exceeds a certain 
value. When n/no = 3, for example, -Sgzz initially rises and then falls sharply near 
the depopulation field. Figure 8 shows the temperature dependence of plots of -Sgz 
against B. As would be expected, the shallow peak structure gradually disappears 
with increasing temperature in agreement with the data. By comparing figures 6 and 
7 we confirm that the peak structure of -S6zi not due to the increase of resistivity 
alone. When n/no  is 22 or 25, the reslstlvlty has a peak but the phonon drag 
thermopower does not 

The experimental peak of -Sgzz is much sharper than we calculate. The most 
likely explanation is that the calculations are made with E parallel to B and the 
measurements are made with E perpendicular to B. In our model, a sharp drop 



90% H Tang and P N Bulcher 

B(T) 

Figure 5. Phonon drag thennopower Se, as a 
function ot B at T = 1.05 K with nIno as 
indicakd on the 0”s. 

Figure 6 Phonon drag thermopower S,, as a 
function of B at T = 1.5 Kwilh m/noas  indicated 
on the curves 

T = 1.5 K with n/no as indicated on the awes. 

h Figure 7. Resistivity R,, as a function of B at 
0 2 I 6 

U) 

of the -Swl near the depopulation field B, is caused by the disappearance of the 
inter-subband emission and absorption scattering processes when the Fermi energy 
drops below the bottom of the first excited subband. The theoretical origin of the 
increase of -Spa in the region of B < E, is that a phonon mode with a larger 
effective Q is involved as B increases for both inter- and intra-suhband scattering 
processes. We would expect the primaly effect of this to be similar in .YgZz and S y y .  

However, the parallel component of the phonon drag velocity component Vguz?cF) 
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10 - 
0 2 4 6  8 

Figure 8. Phonon dmg lhermopowrr S,, as a 
function of B a1 n/no = 3.2 with T as indicaled 

B(T) on lhe CUN~S. 

shows a monotonic decrease with B which greatly depresses the peak of -Sglz, and 
even suppresses the peak altogether when n /no  < 2.5. Numerical comparison of the 
values of UsI(zF) and CJ@9(~F) given in figures 2.1 and 2.2 (which are too small to 
be identified directly from the figures) show that UbOy(zF) is larger than UbOl(zF,) in 
value, and that it also has a positive slope when B increases. Iterative calculations 
of U,(€,) are needed to see if this behaviour is maintained sufficiently strongly in 
higher orders to secure agreement with the experimental data. 

I .  Conclusion 

We have presented the results of calculations of the element S,,, of the phonon 
drag thermopower tensor when an in-plane magnetic field is applied to a ZDEG in 
the zdirection. The theory predicts that S,, will increase sharply with electron 
density when the Fermi level enters the first excited suhband. It also shows that, 
for some electron densities, Sg2= increases (rather gently) with B as a depopulation 
field is approached after which it decreases sharply. Measurements have heen made 
of Swy which shows behaviour which is qualitatively similar to that calculated for 
Sgz2. However, the experimental results are less sensitive to n and more sensitive 
to B. Calculations of Sgyy are required hut they necessitate iterative solution of an 
equation for the y-component of the phonon drag velocity Vgy., In zeroth order V 

gY behaves in a way which suggests that a calculation of Sbyy will yield behaviour m 
much better agreement with the experimental data. If these indications are preserved 
in higher orders of iteration then it would be worthwhile to calculate S,,, for a 
realistic conlining potential and more realistic scattering mechanisms. 
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